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a b s t r a c t

In our geometric modeling, the inner layer of competent rock units in a detachment fold is approximated
by several quadratic Bézier curves, which are joined together according to some geometrical rules,
whereas the outer layers are calculated from the inner layer by parallel folding mechanism. In this model,
an ideal fold is determined by three parameters: w, half of the distance between the locations of the
fold’s two limbs where their dips are measured, q1 and q2, the dip angles of its two limbs. Two more
parameters, respectively the axial lift-up ratio (u) and the limb elongation (E) may be used to change the
ideal fold shape, if necessary. In kinematic modeling, downward deflection in the two synclines flanking
an anticline is assumed to maintain constant area during folding. Both mathematical derivation and
numerical simulation show that the reduction of the balanced area (Ar) is directly proportional to the
downward deflection angle (4), and there is an approximate linear relationship between the detachment
depth and the downward deflection angle. Based on this relationship, an iterative method is used to find
the approximate value of 4. Furthermore, syn-folding growth strata can be modeled through calculating
the velocity field above a detachment fold during folding. The method is applied to three seismic
interpretation cross-sections of detachment folds respectively in Tarim Basin (western China), Zagros
fold-belt (Iran) and Niger delta (western Africa). Variations of 4 with the development of the detachment
folds indicate the transfer of rock materials between the synclinal and anticlinal areas of the folds.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Detachment folds are defined by competent rock units and are
cored by incompetent rock units that are deformed internally above
the detachment horizon. They represent a major structural type of
fold- belts and control the localization of some important mineral
resources such as oil and gas (Scharer et al., 2004; Gonzalez-Mieres
and Suppe, 2006). Precise geometric description and kinematic
simulation of detachment folds provide important clues with the
origin and evolution of these structures.

Previous studies have dealt with the geometric and kinematic
models of detachment folds. Homza and Wallace (1995) regarded
a detachment fold as a triangle, and presented a fixed and variable
detachment depth model. Bulnes and Poblet (1999) evaluated four
different methods for estimating detachment depth beneath
detachment folds, and presented a new, simple method, using
developed in this paper are
tm.
x: þ86 25 8359 6220.
tmail.com (C. Liu).
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information from more than one stratigraphic horizon. By joining
several triangles and quadrangles to describe a fold, Mitra (2003)
developed a kinematic model of detachment folds with growth of
the synclines on the sides of two limbs of an anticline. Wilkerson
et al. (2007) illustrated the utility of some previous models by
constructing pseudo three -dimensional representations of natural
folds, and presented two new two-dimensional geometric and
kinematic models for detachment folds that respectively incorpo-
rate hinge migration and limb rotation as their deformation
mechanisms.

In these geometric models, fold layers are usually approached by
a series of line segments. No doubt, connection of line segments
merely gives a rough approximation to a fold shape, while curves
can describe the change of a fold shape more precisely. Numerous
previous studies concerned with the curved fold shape, in which
a fold is approached by a series of special curves that are defined by
some mathematical functions. Stabler (1968) and Chapple (1969)
have used the Fourier analysis in quantitative description of fold
shapes. Hudleston (1973) improved the method, using only two
Fourier coefficients to classify the shape of folds. However, his
method only gives a rough approximation of the functions of fold
shapes. Twiss (1988) has studied the geometrical properties of folds
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Fig. 1. A quadratic Bézier curve can be defined by three control points: P0, P1, P2. Since
P0P1 and P2P1 are the tangents at the points P0 and P2, respectively, the curve can be
redefined by P0, P2 and the slope of corresponding tangents.
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and has proposed a description method of symmetric folded
surfaces by three fold style parameters. Bastida et al. (1999)
proposed a method to approach fold shapes with the power
functions. Their method of describing a fold is based on two
parameters: the exponent, n, describing the shape, and the
amplitude-wavelength ratio. Srivastava and Lisle (2004) used
computer-aided Bézier curve analysis and reduced eight variables
of a cubic Bézier curve to two variables for describing a fold.
However, these methods are mainly used in fold description and
classification. When they are applied to geometric and kinematic
simulation of a fold, many difficult problems appear. For example,
several segments of curves should be joined in order to approach
fold shape, since it is hard to describe a fold by only one curve. The
crux of the problem is to find the relationship between these curve
segments, by which the curves can be joined smoothly and show
a reasonable change in the evolution of the structure.

In this paper, we present a new geometric model of detachment
folds based on quadratic Bézier curves and provide a possible new
way for classification of folds. We do not assume that the model
represents all natural detachment folds. Rather, a natural detach-
ment fold may be approximated by varying several parameters.
Based on the geometric model, a kinematically balanced model of
detachment folds and growth strata is also presented. The new
model proposed in this paper is designed for computer implement.

2. Geometric model

Bézier curves are a basic and important tool of computer
graphics, which is firstly used in the automobile industry to
describe curvatures and surfaces (Bézier, 1966, 1967). Recently, the
method has been introduced into geological literature (De Paor,
1996) and was used as a tool for fold shape analysis (Srivastava and
Lisle, 2004) and flanking structure description (Coelho et al., 2005).
Since then, the Bézier curves have demonstrated their versatility
for analyzing a wide range of fold geometries. However, in previous
studies (Srivastava and Lisle, 2004; Coelho et al., 2005), the Bézier
curves were mainly used in classification and fold shape analysis,
not for kinematic simulation. In our method, it is supposed that the
curve can be uniquely determined by three points (one hinge point
and two deflection points) and two tangents which represent the
dips of two fold limbs. Based on this, we have chosen the quadratic
Bézier curves.

2.1. Quadratic Bézier curves

Generally, a quadratic Bézier curve is uniquely determined by
the position of three points (Fig. 1): two points, P0(x0, y0) and P2(x2,
y2), are at the two ends of the curve and one further control point,
P1(x1, y1), between them. The parametric equations of a quadratic
Bézier curve are (Bézier, 1966, 1967; Sun and Hu, 2005):

xðtÞ ¼ ð1� tÞ2x0 þ 2ð1� tÞtx1 þ t2x2

yðtÞ ¼ ð1� tÞ2y0 þ 2ð1� tÞty1 þ t2y2
(1)

The parameter t indicates the position along the Bézier curve
from the start point P0, where t ¼ 0, towards the end point P2,
where t ¼ 1. The quadratic Bézier curve, made up of a succession of
points corresponding to different t values, is consequently defined
by the coordinates of points P0, P1 and P2.

Start points and end points are usually defined as the inflection
points or hinge points of folded layer (Srivastava and Lisle, 2004).
Control point P1 that has no geological equivalent should be
determined by some other geometric elements of structures, such
as angles and spans, which can be directly measured from field
examples (Coelho et al., 2005). Since P0P1 and P2P1 are the tangent
at the points P0 and P2 respectively, the quadratic Bézier curve can
also be determined by the two end points (P0, P2) and the slope (k0,
k2) of the corresponding line segments (P0P1 and P2P1). The two
parameters, x1 and y1 in Eq. (1) can be replaced by the slopes:

x1 ¼ ðk0x0 � k2x2 þ y2 � y0Þ=ðk0 � k2Þ
y2 ¼ ðk0k2x0 � k0k2x2 � k2y0 þ k0y2Þ=ðk0 � k2Þ

(2)

2.2. Ideal detachment fold

In this section, an ideal fold with rounded shape and constant
orthogonal thickness is drawn by a simple geometric procedure
based on the new geometric model of folds. In this method, a fold is
divided into three parts by its two inflection points (the points H
and I in Fig. 2c); and each part is approximated by two Bézier
curves, which are connected at their hinge point (the point K in
Fig. 2c). Therefore, inner layer of the fold is composed of six Bézier
curves.

An ideal fold can be drawn by five steps:

(1) Confine the area of the fold. Draw an isosceles triangle ABC, in
which the points B and C represent the inflection points on the
fold limbs. AB and AC are the corresponding tangents of the
folded surface at the inflection points. The angles that AB and
AC form with the x axis represent the limb dips (q1 and q2). The
origin of the coordinates is set at point O with AO being the
bisector line of :BAC. Hence, BO ¼ CO¼w, where w is
a parameter that can be used to describe the size of the fold.

(2) Find the core of the fold. Draw BD and CE perpendicular to AB
and AC, respectively, and let BD ¼ CE ¼w. Then, draw perpen-
diculars to BD and CE from D and E, respectively. The two
perpendiculars intersect at the point F, which is defined as the
fold core. Find another point G along the direction of FA, which
makes FG ¼ w. The point G and the line segment FG are defined
as the hinge point and the fold axial plane, respectively. Note
that since the triangle ABC is an isosceles triangle, F and G
should be on the line AO (Fig. 2b).

(3) Draw the center part. Mark the end points of each bed on
segments BD, FG and CE equidistantly. The points, H, K and I, are
the end points of the bottom layer of competent rock units.
Connect the corresponding end points with two Bézier curves,
one Bézier curve with the end points H and K and the other K
and I. Each of the two Bézier curves is drawn according to the



Fig. 2. The geometric modeling of an ideal detachment fold. (a) Draw an isosceles triangle ABC, in which the angles that segment AB and AC form with the x axis are q1 and q2 (limb
dips), respectively. (b) Find the fold core F and the hinge point G, which make FG ¼ BD ¼ CE. (c) The end points of each bed on segments BD, FG and CE are marked equidistantly, by
which two curves are illustrated to compose the inner layer. Afterward, the outer layers of competent rock units are calculated from the inner layer by parallel folding mechanisms.
(d) Two limbs can be drawn according to the similar rules as the center part. (e) Finally, the ideal detachment fold is obtained.
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position of its two end points and the slope at the end points in
Eqs. (1) and (2). The common slope of the two Bézier curves at
the hinge point K, where they are connected, is assumed to be
perpendicular to the fold axial plane while the slopes at the end
points H and I are given as the dips of fold limbs (q1 and q2

respectively). The overlying layers of competent rock units in
the fold are drawn layer by layer upward according to the
bottom layer based on the principle of iso-thickness. The center
part of the fold (Fig. 2c) is determined by w, q1 and q2.

(4) Draw the left part. The left side of the left part of the fold should
be connected with the horizontal strata, while the other side
with the beds of the center part of the fold along the line
segment BD. Just repeat the steps (1)–(3) to draw the left part
(Fig. 2d).

(5) Draw the right part. Since the slope of the right limb is smaller
than the slope of the left limb in this demonstration, the right
limb should be extended along the direction of C to I00 in order
to maintain the strata at the two ends of the fold to be on the
same level (Fig. 2d).

Eventually, the ideal detachment fold geometry (Fig. 2e) is
determined by three parameters: w, q1 and q2.
2.3. Axial lift-up ratio and limb elongation

There is an approximate uniform curvature distribution
between the hinge point and the inflection point of an ideal
detachment fold. In order to simulate more types of folds, such as
chevron folds with straight limbs and curvature concentrated at the
hinge and box folds with curvature concentrated in two corners. A
new parameter u, which means axial lift-up ratio, is defined to
determine the curvature distribution of folded layers:

u ¼ lKL=lJL (3)

where lKL and lJL represent the length of line segments KL and JL in
Fig. 3, in which H, K and I are the three control points of the bottom
layer of competent rock units (see also Fig. 2c); the point J is
determined from the inflection points H and I and the dips of two
fold limbs (JH and JI are parallel to AB and AC, respectively).

Fig. 3 shows how the parameter u controls the distribution of
curvature in a fold. One end of the fold shape spectrum, u ¼ 0,
approximately corresponds to box folds, while the other end, u ¼ 1,
corresponds to chevron folds. When 0 < u < 1, the fold shape
spectrum shows a gradual change between the above two end
types of folds.

In the fifth step of modeling an ideal detachment fold, the right
limb is extended in order to maintain the horizontal strata of two
fold limbs on the same level (Fig. 2d). A parameter E is used to
represent the limb elongation, which is defined to be:

E ¼ lCI00=w (4)

where lCI’’ represents the length of line segment CI00 in Fig. 2d; and w
is the parameter, mentioned above, used to describe the size of the
fold.

Eventually, the shape of a detachment fold can be determined
by the following parameters: q1, q2, ul, uc, ur, El and Er, where the
subscripts l, c and r represent the parameters of the left part, center
part and right part, respectively. For example, uc means the axial
lift-up ratio of the center part.
3. Kinematic model

A balanced kinematic model of detachment folds is presented in
this section, which is based on the geometric model described in
the previous section. In order to simulate the development of
a detachment fold, we will make two kinematic assumptions: (1)
the fold initiates, or rapidly develops, with a high wavelength-
amplitude ratio, with the fold wavelength determined by the
thickness of the competent unit (Biot, 1961; Currie et al., 1962). (2)
The two limbs (or synclinal areas) are deflected below their
regional position in the evolution (Mitra, 2003), to maintain area
balanced and to be kinematically admissible.



Fig. 3. Axial lift-up ratio: u ¼ lKL/lJL. The folded surface changes from box form to chevron form when u increases from 0 to 1.0.
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According to the first assumption, the initial conditions of
a detachment fold are assumed as: q1 ¼ 0�, q2 ¼ 180�. Then, if the
final conditions and the deformation mechanism are given, a series
of intermediate states of the fold could be computed and drawn by
the program (see the article footnote for additional information of
the program).

The second assumption is determined by the first one. If
a detachment fold initiates with a high wavelength-amplitude
ratio, the excess area of the fold above the regional datum (A1) is too
high compared to the shortened area (A2) (Fig. 4a; see also Fig. 9a,
Mitra, 2003). This problem can be solved, taking a downward
deflection of the two limbs (i.e., forming two synclinal areas) below
the regional datum into consideration (Fig. 4b; see also Fig. 9b,
Mitra, 2003). In Fig. 2d, the angle that the line segment C0Q0

(correspondingly C0Q1
0 and C0Q2

0 in Fig. 4) forms with the x axis is
the downward deflection angle of the limbs (4). For the sake of
simplicity, the downward deflection angle of both limbs is assumed
to be same 4 in the following discussion. In each step of folding,
there is a corresponding unique value of 4, which maintains the
area balanced and the detachment depth constant.
Fig. 4. (a) Fold initials with high wavelength-amplitude ratio will result in an area
balancing problem. Since A1 > A2, application of conventional depth to detachment
calculation incorrectly predicts a deep detachment. (b) The downward deflection of the
two limbs below the regional datum maintains area balanced. (c) Reduction of
balanced area (Ar) is divided into three parts, and can be computed by the integral
operation of sinking curve.
3.1. Constant detachment depth

The principles of the conservation of bed length and cross-
sectional area (Hossack, 1979; Homza and Wallace, 1995) are
widely recognized. The depth to detachment is determined by the
following equation:

z ¼ A=ðl0 � lÞ (5)

where z is the theoretical detachment depth; A is the uplifted area
in the anticline core (balanced area); l0 is the arc-length of a refer-
ence bed after folding; and l is the fold width (Fig. 4a). This rela-
tionship has been widely used since Chamberlin (1910) firstly used
it to estimate the detachment depths beneath Appalachian folds.
Mitra (2003) improved this method by considering the sinking of
rock units in the synclines flanking the anticline. Rock materials are
transferred from the synclinal areas to the anticlinal area when
a fold initiates. It is required that:

A02 ¼ A01 �
�
A03 þ A04

�
(6)

where A1
0 is the excess area above the regional datum; A2

0 is the
shortened area; A3

0 and A4
0 are the synclinal areas below the

regional datum (Fig. 4b). Taking S0 ¼ l0 � l0, the depth to detach-
ment (z) is given by (Mitra, 2003):

z ¼ A02=S0 (7)

The constant detachment depth (d) of a natural detachment fold
can be calculated from Eq. (5) or other methods (e.g. Bulnes and
Poblet, 1999). In the following text, we will introduce a method to
find the approximate solution of 4, which makes z z d (d is the
known constant detachment depth) in each step of folding. The
solution is obtained from an approximate equation through an
iterative method.

3.2. An approximate equation

In an intermediate step of the early stage of folding, if 4 ¼ 0,
A1 > A2, the area is not balanced (Fig. 4a). Therefore, the application
of conventional calculation method leads to an incorrect prediction
of the depth to detachment (as z0 > d in Fig. 4a). Let S ¼ l0 � l:

z0 ¼ A1=S (8)
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where z0 is the incorrect deep detachment depth. As shown in
Fig. 5d, the z w q1 curve (when 4 ¼ 0) is similar to a hyperbola,
which suggests an incorrect deepened detachment depth when the
fold initiates and develops.

When 4 > 0 (Fig. 4b), the center part of the fold (including the
parts of limb elongation) sinks without deformation, as the limb
dips are not changed; in the left and right parts of the fold, the
amount of sinking decreases with increasing of horizontal distance
to the corresponding inflection points (such as B1

0 in Fig. 4a and C00

in Fig. 2d). The upper part of the fold (the gray region in Fig. 4c)
represents the deficit area (Ar), which can be expressed as:

Ar ¼
�
A1 � A01

�
þ
�
A03 þ A04

�
(9)

Substituting Eq. (6) into this equation gives the following expres-
sion for Ar:

Ar ¼ A1 � A02 (10)

On the other hand, Ar can be obtained by integral operation of
the sinking curve (Fig. 4c; detail in Appendix A):

Ar ¼ w½w2 þ 2=3ðw1 þw3Þ�,4 (11)

where w1, w2, w3 are the horizontal distance between inflection
points (points C0, B0, C00 and B00 in Fig. 2d). This equation implies that
area reduction (Ar) is directly proportional to the downward
deflection angle (4).

Let S0 ¼ S, with Eqs. (7), (8), (10) and (11), and the expression
between z and 4 is given by:

k ¼ �w½w2 þ 2=3ðw1 þw3Þ�=ðl0 � lÞ (12)

z ¼ z0 þ k4 (13)

where z0 is the incorrect deep detachment depth determined by Eq.
(8). As w, w1, w2, w3, l and l0 are known, k is approximate to
a constant in a certain intermediate step of folding. Eq. (13) is the
approximate equation, which indicates a simple linear relationship
Fig. 5. Simulation results from the program, when w ¼ 53.33, uc ¼ 0.6, ul ¼ ur ¼ 0.5, El ¼ Er

deflection angle (4). (b) However, S is not a constant when 4 increases. (c) Since z ¼ (A1 � A
iterative operation, z converges to the constant detachment depth (d).
between detachment depth (z) and 4. Substitute z ¼ d for Eq. (13),
then 4 can be expressed as:

4 ¼ ðd� z0Þ=k (14)

Simulation results from the program are consistent with the
relationships from the mathematical derivation. While other
parameters are kept constant, a variation of the angle 4 produces
a series of values for Ar, S and z. The results are plotted on the graphs
of Figs. 5a–c, in which 4 has been converted into the degree
measure. Fig. 5a shows that Ar is directly proportional to 4, which is
consistent with Eq. (11). However, as z ¼ (A1 � Ar)/S, the decrease of
S (Fig. 5b) results in curvilinear shape of z w 4 (Fig. 5c). Therefore,
there is a linear approximate relationship between z and 4, and the
linear relationship is more significant when 4 increases.

3.3. Iterative method

The iterative operation aims at an approximate solution of 4,
which makes z converge to the constant detachment depth (d) in
certain intermediate step of folding.

(a) Let 4 ¼ 40 ¼ 0, A1 and l0 can be computed by numerical
integration; z0 is calculated from Eq. (8); and k is computed
from Eq. (12).

(b) Let 4 ¼ 41 ¼ (d � z0) / k. In this case, A1
0, A3

0, A4
0 and l0, can

also be computed by numerical integration, and detachment
depth (z1) is calculated from Eqs. (6) and (7). The corre-
sponding z w q1 curve is illustrated in Fig. 5d (when 4 ¼ 41),
which is close to d, yet higher.

(c) Since there is an approximate linear relationship between z
and 4, together with the two couples of data (40, z0) and (41,
z1), 42 can be derived as follows:

ð42 � 41Þ=ð41 � 40Þ ¼ ðd� z1Þ=ðz1 � z0Þ
42 ¼ ðd� z1Þ,ð41 � 40Þ=ðz1 � z0Þ þ 41

(15)

Let 4 ¼ 42, and z2 can be calculated in a similar way as z1. The new
couples of data (z2, 42), are plotted in Fig. 5d, and the corresponding
curve is closer to z ¼ d.
¼ 0. (a) The reduction of balanced area (Ar) is directly proportional to the downward

r)/S, the reduction of S will result in curvilinear shape of z w 4. (d) After three times of
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(d) As (41, z1) and (42, z2) are known, just repeat step (c) until z
converges to d.

Simulation results indicate that z approximately converges to
d after three iterative operations. In Fig. 5d, when 4 ¼ 43, the
corresponding curve is approximate to a straight line, which
suggests the depth to detachment is constant during the folding.

4. Velocity field of syn-folding growth strata

Growth strata offer us the possibility of deciphering kinematic
histories of growing structure, which can be divided into pre-
growth strata and syn-growth strata. Thinning of units in the hinge
zone of anticlines is the main characteristic of syn-folding growth
strata. The kinematic histories of growth strata can be deciphered
through the process of balanced restoration (Poblet et al., 1997;
Casas-Sainz et al., 2005). Here, a new method is used to obtain the
velocity field of growth strata of detachment fold, by which the
evolution of these strata can also be simulated in the program.

4.1. Velocity field

The pre-growth strata of Figs. 6a–c were illustrated according to
the geometric model, and consequently defined by a series of shape
parameters. In the kinematic evolution, the fold develops following
Eq. 16, and the downward deflection of limbs is not considered
(4 ¼ 0) in order to simplify the description of the method. The
velocity field above the pre-growth strata can be obtained by the
following numerical calculation method. Firstly, imagine that
pseudo strata are stacked on the top of pre-growth strata when
a fold initiates. Then, the fold shape is determined by shape
parameters in each step of folding. These overlying pseudo layers,
which have constant orthogonal thickness, deform entirely by
parallel folding. In Figs. 6a–c, seven points have been marked on
a pseudo layer to indicate the movement of material, in which point
4 is assumed to be always located on the hinge point. The distances
along folded surface between point 4 and other points are constant
during the folding to maintain length balance, and consequently
the area is kept at a balance, as orthogonal thickness is constant.
Therefore, the location of other points can be determined by line
integration of curves along the folded surface, which follows
constant length principle.

Based on these assumptions, for a certain step of evolution, the
velocity of a point can be obtained by subtracting the value of the
Fig. 6. (a) Pseudo strata are assumed to be stacked on the top of pre-growth strata. Seven p
develop according to parallel folding model to maintain area and length constant. (d) Velo
points during the fold evolution.
point coordinates of current step from that of next step. Apply this
method to all points on the pseudo layer, the corresponding
velocity spectrum is created and shown in Fig. 6d, which indicates
that the hinge zone moves upward and two limbs move toward the
fold core when the fold initiates. Since the velocity of each point on
the overlying growth layers can be obtained by computing the
movement of corresponding pseudo layer, the velocity field can be
obtained in the program to simulate the movement of growth
strata.

4.2. Kink-band migration and limb rotation

Growth strata patterns are controlled by axial plane activity,
limb rotation, limb lengthening, fold uplift rates, sedimentation
rates and deformation mechanisms of the syn-folding sediments
(Poblet et al., 1997). The same fold shape of pre-growth strata can
be generated by different mechanisms, such as kink-band migra-
tion (variable limb dip and variable limb length) and limb rotation
(variable limb dip and constant limb length). However, different
mechanisms will result in different shapes of growth strata
providing the possibility of deciphering kinematic histories of folds
(Suppe et al., 1997; Poblet et al., 1997; Srivastava et al., 1998).

The evolution of growth strata can be simulated by computing
velocity field in each step of folding. This syn-folding sedimentation
without any erosion has been applied to two deformation mecha-
nisms of the fold: kink-band migration and limb rotation. Simula-
tion result is illustrated in Fig. 7, in which three inflection points I,
C00 and B00 (see Fig. 2d) have been marked, indicating the movement
of competent rock units. The result shows that the two mechanisms
have different final shapes of growth strata, while pre-growth
strata are identical. The cross-section of Fig. 7a, which is formed by
kink-band migration, shows that ‘‘the thickness change in each
growth bed is mainly localized in the anticlinal hinge and the fold
limb does not vary in dip except in the zone of hinge formation at
shallow depths’’ (Suppe et al., 1997). In contrast, the cross-section
of Fig. 7b is formed by limb rotation, recording that ‘‘thickness
change in each growth bed is spread out over the fold limb, which
causes the fold limb to progressively change dip’’ (see also Fig. 1,
Suppe et al., 1997; Figs. 3 and 5, Poblet et al., 1997).

The different growth strata patterns are caused by distinct
velocity fields. The velocity vectors of pseudo strata are plotted on
Fig. 7, and the length of gray segment indicates the value of velocity.
Kink-band migration requires limb lengthening (increase of E)
oints have been marked to indicate the movement of material. (b, c) The pseudo strata
city spectrum of the pseudo layer can be obtained by computing the displacement of



Fig. 7. The growth strata and velocity fields of two mechanisms. (a) Kink-band migration. (b) Limb rotation. In both mechanisms, the sedimentation rate is constant, and the final
shape parameters of competent unit are: q1 ¼ 20, q2 ¼ 160, El ¼ Er ¼ 2, ul ¼ uc ¼ ur ¼ 0.6. Note: The length of gray segment indicates the value of velocity.
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during the folding, while dip angle changes evenly following Eq.
(16). Therefore, compared with limb rotation, fold initiates with
a lower uplift velocity and end with a greater uplift velocity in this
mechanism (compare the gray segment of Fig. 7a with that of
Fig. 7b). The fold growth by kink-band migration shows
a decreasing thickness of growth strata in the hinge zone (Fig. 7a).
Conversely in limb rotation, the axial lift-up rate of the fold is
almost unchanged during the folding, which lead to an approxi-
mate uniform layer thickness in the hinge.

5. Examples

For illustration of the new model, we apply it to three seismic
interpretation maps of detachment folds respectively in Tarim Basin
(western China), Zagros fold-belt (Iran) and Niger delta (western
Africa). The kinematic numerical simulation of the detachment folds
and growth strata were carried out in a program (see the article
footnote ), developed within the models in this paper.

5.1. A detachment fold, Tarim Basin, Xinjiang Province, China

The cross-section (Fig. 8a) was imported into the program and
approximated from the following procedure. Firstly, change the
size of the map until the thickness of competent unit matches the
default thickness in the program. Secondly, set the limb dips (q1 and
q2) of the default fold according to the natural detachment fold.
Thirdly, adjust other parameters (u, E) until the program traces out
the given fold shape (Fig. 8b).
Fig. 8. (a) Seismic interpretation cross-section of a detachment fold, Tarim Basin, Xinjiang P
uc ¼ 0.52, ur ¼ 0.50, El ¼ 0, Er ¼ 0.82 and 4 ¼ 0. (c) The 4 w n curve indicates the transfer o
In this example, we assume that this fold was formed by limb
rotation mechanism, i.e. q1 and q2 changed evenly, and u and E are
constant in the evolution. The initial conditions of the detachment
fold are determined by the kinematic assumption: q1,0 ¼ 0� and
q2,0 ¼ 180�. Since the final conditions of the fold have been given,
the evolution of the detachment fold can be simulated in the
program. The evolution progress is divided into 100 steps. In each
step (step n), the fold shape is determined by the shape parame-
ters, which can be calculated from the following equations
(0 � n � 100)8<
:

a1;n ¼ a1,n=100
a2;n ¼ 180� ð180� a2Þ,n=100
un ¼ u; En ¼ E

(16)

In the evolution, downward deflection angle 4n is computed by the
approximate equation and the interactive method.

Fig. 8c illustrates how 4 changes during the folding: when
n ¼ 0, 4 ¼ 0, it corresponds to the initial conditions of the
detachment fold; when n ¼ 100, 4 ¼ 0, the final fold shape is
presented; and when 0 < n < 100, 4 increases at the beginning
and return to zero at the end of folding, which indicates the
transfer of rock materials between synclinal and anticlinal area.
The fold initiates with a high wavelength-amplitude ratio (when n
is small), the downward deflection of the two limbs (synclinal
areas) maintains area balanced. In the later stages of the folding
(when n is close to 100), the units return to their regional posi-
tions in the synclines. The simulation result confirms the conclu-
sions of Mitra (2003).
rovince, China. (b) The competent unit is determined by: q1 ¼ 36� , q2 ¼ 156� , ul ¼ 0.50,
f material between synclinal (two limbs) and anticlinal area.



Fig. 9. (a) Seismic interpretation cross-section of a detachment fold, Zagros fold-belt, Iran (modified from Sherkati et al., 2005). (b) The corresponding shape parameters are:
q1 ¼ 24� , q2 ¼ 155� , ul ¼ 0.50, uc ¼ 0.50, ur ¼ 0.58, El ¼ Er ¼ 0 and 4 ¼ 0. (c) Compared with the first example, the 4 w n curve of this symmetrical fold shows a smaller 4.

Fig. 10. (a) Seismic interpretation cross-section of a detachment fold and growth
strata, Niger delta, western Africa (modified from Gonzalez-Mieres and Suppe, 2006;
the right part of this cross-section, which involved in secondary folding, has been cut
out). (b) The simulation cross-section that formed by limb rotation is determined by
these parameters: q1 ¼ 30� , q2 ¼ 145� , ul ¼ 0.50, uc ¼ 0.85, ur ¼ 0.50, El ¼ Er ¼ 0.3.
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5.2. A detachment fold, Zagros fold-belt, Iran

This seismic interpretation cross-section (Fig. 9a) was approxi-
mated following the procedure introduced in the first example. The
corresponding shape parameters are: limb dips q1 ¼ 24� and
q2 ¼ 155�; El ¼ Er ¼ 0, which indicate a symmetrical fold shape. We
also assume that this fold developed by limb rotation mechanism,
and consequently follows Eq. (16).

The simulation result is shown in Fig. 9c, which gives a similar
trend of 4 w n curve. This fold also initiates with high wavelength-
amplitude ratio, and deflection angle increases at the beginning
and returns to zero at the end of folding. However, compared with
the first example, limb dips and limb elongation are smaller in this
detachment fold, i.e., a smaller excess area. According to Eq. (11), 4

is directly proportional to Ar. As a result, the maximum deflection
angle is smaller in this detachment fold.

5.3. A detachment fold with growth strata, Niger delta, western
Africa

This detachment fold with growth strata (Fig. 10a) lies at 1.5 km
water depth within the passive-margin fold-and-thrust belt of the
Niger delta, offshore Nigeria (Bilotti and Shaw, 2005; Gonzalez-
Mieres and Suppe, 2006). A strong about 4� landward dipping
reflector at 10–11 km depth results in the west limb of this other-
wise symmetric anticline to have lower dip compared with that of
the east limb.

The core of the fold shows a substantial excess area, which may
involve far-field injection of mobile material (Gonzalez-Mieres and
Suppe, 2006). Therefore, downward deflection of limbs is not
considered in the simulation, i.e. 4 h 0 in the folding. In Fig. 10a,
the shape of growth strata is similar to that of Fig. 7b, which is
formed by limb rotation mechanism. As a result, in kinematic
simulation, the fold develops step by step following Eq. (16);
velocity field was created by computing the movement of pseudo
strata; and finally, the kinematic simulation of the fold and growth
strata can be carried out in the program. The interpreted cross-
section (Fig. 10a) and the simulation map (Fig. 10b) are in good
agreement, which suggests mainly limb rotation mechanism
(Bilotti and Shaw, 2005).

6. Discussions and conclusions

The model of detachment folds and growth strata is based on
quadratic Bézier curves, and involves joining together several
segments of the Bézier curves to approximate fold shape. The basic
three parameters, w, q1 and q2, define an ideal detachment fold. In
order to simulate complex natural folds, two more parameters u
and E are used to control the axial lift-up ratio and the limb elon-
gation respectively.

In the kinematic modeling of detachment folds, area balancing
requires downward deflection of synclines flanking anticline. An
approximate equation and an interactive method are developed to
compute the approximate solution of downward deflection angle
(4), which maintains the area balanced and detachment depth
constant in the kinematic evolution. In the process of derivation,
a new area parameter, Ar represents the reduction of the balanced
area when downward deflection of two limbs is considered. Both
mathematical derivation and simulation results show a direct
proportional relationship between Ar and 4, and a linear approxi-
mate relationship between detachment depth (z) and 4. In the
examples, the 4 w n curve indicates the transfer of material
between synclinal and anticlinal area during the folding, which is
confirmed by previous studies.
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Further, this paper has introduced a method to create velocity
field by computing the movement of pseudo strata. In order to
show the feasibility of simulating the evolution of growth strata
and deciphering kinematic histories of folds, this method is applied
to a detachment fold to simulate its evolution with growth strata.
The disadvantage of the method is that it is only applicable to the
folds with gentle dips and approximate uniform curvature distri-
bution between hinge points and inflection points, since steep dips
or concentrated curvature distribution will lead to an impossible
cuspate shape in the limbs of pseudo layers. However, this method
still provides a good result when the limb dip is less than 30� and
the axial lift-up ratio (ul and ur) is between 0.4 and 0.6. Note that
the folded surface shows an approximate uniform curvature
distribution in Fig. 3, when u is 0.5.

We have assumed that the folds develop evenly, and shape
parameters are changed regularly in the kinematic evolution.
Actually, a fold may remain one limb dip unchanged while the
other dip increases. More research should focus on the hinge
migration and the limb rotation in this model, and more functions
should be added to this model in order to deal with these new
situations. Furthermore, the numerical simulation method of
growth strata needs to be improved, since the present method is
confined to the folds with gentle dips. These may be regarded as the
next objective of research.
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Appendix A: Computation of Ar (reduction of balanced area)

We will describe here how to obtain Ar, i.e., Eq. (11). Fig. 11a is
modified from the top left corner of Fig. 4c, which indicates the
movement of points and lines when downward deflection of limbs
is considered. The length, h, which represents the sinking of center
Fig. 11. (a) When the limb sinks into bed, points B0 , A0 and Q0 (in Fig. 2d) are moved to
the position of points B2

0 , A2
0 and Q2

0 , respectively. (b) R1 (see Fig. 4c) can be obtained
by integral operation of the parabola.
part (Fig. 4c), is approximate to the length of arc B1
0B2
0, which can

be derived following.
A1
0B1
0C0 is an isosceles triangle (see also triangle A0B0C0 in Fig. 2d),

therefore:

:B01C0Q 01 ¼ :B01A01Q 01=2 ¼ q1=2 (A1)

where q1 is the dip angle of left limb. When the limb sinks into bed,
points B0, A0 and Q0 (in Fig. 2d) are moved to the position of points
B2
0, A2

0 and Q2
0, respectively; the angles that C0Q2’ and B2

0A2
0 form

with the horizontal axis (C0Q1
0) are 4 and q1, respectively. A2

0B2
0C0 is

also an isosceles triangle, therefore:

:B02C0Q 02 ¼ :B02A02Q 02=2 (A2)

with

:B02A02Q 02 ¼ :C0PA02 þ:Q 01C0Q 02
¼ q1 þ 4

Eq. (A2) is expressed as:

:B02C0Q 02 ¼ ðq1 þ 4Þ=2 (A3)

and consequently

:B02C0Q 01 ¼ :B02C0Q 02 � 4
¼ ðq1 � 4Þ=2

(A4)

with Eqs. (A1) and (A4),:1 can be calculated from:

:1 ¼ :B01C0Q 01 �:B02C0Q 01 ¼ 4=2 (A5)

The length of segment B1
0C0 is known:

lB01C0 ¼ 2w (A6)

therefore, the approximate solution of sinking is given by:

Arc B01B02 ¼ lB01C0,:1 ¼ ð2wÞ,ð4=2Þ ¼ w4

hzArc B01B02 ¼ w4 (A7)

The lower part of Fig. 4c shows that Ar can be calculated by the
integral operation of the sinking curve, which is divided into three
parts: R1, R2 and R3. The center part of sinking curve is a horizontal
segment, therefore, R2 is calculated from:

R2 ¼ w2h (A8)

The corresponding sinking curve segments of two limbs are close
to parabolas (Fig. 4c). Therefore, the gray region under the curve
segments can be calculated by integral operation of the parabolas.
The sinking curve of the left limb is redrawn on the coordinates of
Fig. 11b. Since the highest point of the parabola is located on the y
axis, the definition equation of this curve can be written as:

f ðxÞ ¼ ax2 þ b

where a and b are unknown coefficients. Substitute (0, h) and
(�w1, 0) into this equation, the two coefficients are obtained. Then,
the definition equation is given by:

f ðxÞ ¼ � h

w2
1

,x2 þ h (A9)

therefore, R1 can be calculated from:

R1 ¼
Z 0

�w1

f ðxÞ ¼ 2=3w1h (A10)

Similarly



C. Liu et al. / Journal of Structural Geology 31 (2009) 260–269 269
R3 ¼ 2=3w3h (A11)

with Eqs. (A8), (A10) and (A11), Ar is obtained:

Ar ¼ R1 þ R2 þ R3 ¼ w½w2 þ 2=3ðw1 þw3Þ�,4 (A12)

Appendix B: Abbreviations

q1 dip angle of left limb
q2 dip angle of right limb
w the parameter used to describe the size of a fold
a dip angle of axial plane
b b ¼ (q2 � q1)/2
u axial lift-up ratio
E limb elongation
4 downward deflection angle of limbs
z theoretical detachment depth
z0 incorrect deep detachment depth
d constant detachment depth
l0 Arc-length of a reference bed after folding
l fold width
S shortening
S0 shortening (deflection of limbs)
h sinking of center part, i.e. max sinking
A1 excess area above regional datum
A2 shortened area
A1
0 excess area above regional datum (deflection of limbs)

A2
0 shortened area (deflection of limbs)

A3
0 A4

0 synclinal areas below the regional position
A balanced area
Ar reduction of balanced area (A) when downward deflection of
limbs is considered
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Suppe, J., Sábat, F., Munoz, J.A., Poblet, J., Roca, E., Vergés, J., 1997. Bed-by-bed fold
growth by kink-band migration: Sant llorenç de Morunys, eastern Pyrenees.
Journal of Structural Geology 19, 443–461.

Twiss, R.J., 1988. Description and classification of folds in single surfaces. Journal of
Structural Geology 10, 607–623.

Wilkerson, M.S., Smaltz, S.M., Bowman, D.R., et al., 2007. 2-D and 3-D modeling of
detachment folds with hinterland inflation: a natural example from the Mon-
terrey Salient, northeastern Mexico. Journal of Structural Geology 29, 73–85.


	Geometric and kinematic modeling of detachment folds with growth strata based on BEzier curves
	Introduction
	Geometric model
	Quadratic BEzier curves
	Ideal detachment fold
	Axial lift-up ratio and limb elongation

	Kinematic model
	Constant detachment depth
	An approximate equation
	Iterative method

	Velocity field of syn-folding growth strata
	Velocity field
	Kink-band migration and limb rotation

	Examples
	A detachment fold, Tarim Basin, Xinjiang Province, China
	A detachment fold, Zagros fold-belt, Iran
	A detachment fold with growth strata, Niger delta, western Africa

	Discussions and conclusions
	Acknowledgements
	Appendix A: Computation of Ar (reduction of balanced area)
	Appendix B: Abbreviations
	References


